データマーケティングコラム
近年需要が高まるデータサイエンティストに求められるスキルとは?
公開日:
近年、ビッグデータ活用の重要性が高まるとともに話題に挙がることが多くなったデータサイエンティストという職業。他の職業もそうですが、データサイエンティストにも欠かせないスキルセットが存在し、そのスキルセットを習得することによってデータサイエンティストとしての実力を上げていけます。今回は、データサイエンティストに求められるスキルについて解説していきます。
データサイエンティストの仕事をおさらい
一般社団法人データサイエンティスト協会(DS協会)の定款第1章「総則」第2条にて以下のような記載があります。『データサイエンティスト(分析人材)とは、高度に情報化された社会において、日々複雑化及び増大化(ビッグデータ化)するデータを、利用者の利用目的に応じて情報を収集・分析する技術を有し、ビジネスにおいて実行可能な情報を作ることができる者をいう。』
IoTの普及などによって、これまで取得できなかった細かい情報もリアルタイムで取得できるようになり、その細かい大量の情報を分析できるデータサイエンティストの需要は伸び続けています。
データサイエンティストに求められるスキル
早速、データサイエンティストに求められるスキルをみていきましょう。ただし大前提として、職場によって求められるスキルは細かく異なってくることにご注意ください。一般社団法人データサイエンティスト協会(DS協会)が2014年12月に広報している「データサイエンティストのミッション、スキルセット、定義、スキルレベル」に基づくと必要なスキルは下記の通りです。
ビジネスにおける課題解決能力
データサイエンティストは、自社や顧客が抱えるビジネスの課題を理解した上で整理し、解決する力がまず必要です。顧客や自社のビジネスを踏まえたうえで、論理的思考能力を駆使してデータを収集し、分析する必要があります。データがどのように課題解決に役立つかプレゼンする能力や、企業の上層部がわかるように会話するコミュニケーション能力も必要です。情報処理・人工知能・統計学などの知識
情報処理・人工知能・統計学などの知識は、データサイエンティストの業務を遂行するにあたって必須スキルです。プログラミングスキルとしては、特にPythonやR言語などの知識が必要になってきます。Pythonは人工知能分野で活用されるライブラリが充実しており、Rは統計解析向けのライブラリが備わっていて、共にデータサイエンティストの業務遂行にあたって利便性の高いプログラミング言語です。
データサイエンスを実装・運用する能力
最後に、データを事業に利用できるような形にする力が要求されます。データサイエンティストはビッグデータと呼ばれる大量のデータを扱うことが多く、データの収集、蓄積、操作にあたっては、Hadoopを中心としたビッグデータ特有の知識が必要になるでしょう。大量のデータを扱うため、効率的なデータ収集、データ処理、適切なデータベース設計などのデータベース知識もあるとベターです。業務によってはSPSSやTableauなどの分析ツールを用いて分析を実施することもあります。データサイエンティストに必要な3つのスキルをご紹介しましたが、現実として、これら3つのスキルを全て高いレベルで満たしている人材は限られており、現実としてデータサイエンティストは下記3つのどれかに当てはまる場合が多いように感じられます。
□ 分析に特化(統計解析)
□ アルゴリズムに特化(論文の実装や検証)
□ システム開発に特化(MLOpsやビッグデータ)
何か一つでも強みがあると、当然ながらその能力を求める企業にマッチしやすくなり、その他のスキルも業務を通じて伸ばしていけるでしょう。
データサイエンティストに求められるスキルを知って効率的なキャリア形成を
データサイエンティストは、利用者の利用目的に応じて情報を収集・分析し、実際のビジネスで使えるようにする人員のことで、データサイエンティストに求められるスキルには、ビジネスにおける課題解決能力や情報処理・人工知能・統計学などの知識、データサイエンスを実装・運用する能力などがあります。しかし現実として、これらすべてのスキルを有しているデータサイエンティストは多くないため、何かひとつでも特化したスキルがあれば、そのスキルを求める企業にマッチしやすく、他のスキルも業務を通して伸ばしていけるでしょう。
クロス・マーケティングでは、データサイエンスの領域の中でもマーケティング課題の解決にフォーカスを当てた分析コンサルタントとして『データマーケター』という職種を設けています。社内データの統合を含むCRM運用支援や、BIツールを用いた分析環境構築・教育支援などを遂行しているため、これらの内容でお困りのお客様は、ぜひ一度クロス・マーケティングへご相談ください。
■参考サイト:
https://www.datascientist.or.jp/about/statute/
http://www.datascientist.or.jp/files/news/2014-12-10.pdf
https://udemy.benesse.co.jp/data-science/data-analysis/datascientist-qualification.html
https://www.creativevillage.ne.jp/76267
https://https://type.jp/et/feature/10743/
https://https://www.agaroot.jp/datascience/column/datascientist/
https://https://www.liber.co.jp/knowhow/careerlab/ds/002.html
https://www.bigdata-navi.com/aidrops/841/
https://career.levtech.jp/guide/knowhow/article/127/
https://school.brainpad.co.jp/about/skill
https://www.pasonatech.co.jp/workstyle/column/detail.html?p=2728
https://www.pasonatech.co.jp/workstyle/column/detail.html?p=2231
https://www.datascientist.or.jp/common/docs/skillcheck.pdf
https://www.tableau.com/ja-jp/learn/articles/data-science-skills
関連ページ